<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>サトウキビメモ その3 沖縄県サトウキビ競作会にみる多収技術</td>
</tr>
<tr>
<td>Author(s)</td>
<td>島袋正樹</td>
</tr>
<tr>
<td>Citation</td>
<td>沖縄農業, 35(1): 68-70</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/20.500.12001/1462</td>
</tr>
<tr>
<td>Rights</td>
<td>沖縄農業研究会</td>
</tr>
</tbody>
</table>
サトウキビメモ その3

沖縄県サトウキビ競作会にみる多収技術

島袋正樹
（沖縄県農業試験場）

Masaki Simabukuro: Sugarcane lecture (3) High yielding technology in the sugarcane competition association in Okinawa Prefecture.

Ⅲ株出栽培:

1. 栽培地域と品種について

株出の部は平成5年から実施さた。表1と表2には、平成5年から12年までの可製糖量関連形質の形質値を示した。栽培地域は、東風平町4点、玉城村3点、下地町2点、大里、宜野座村、石垣市がそれぞれ1点の合計12点であった。沖縄本島南部のジャガル地域での栽培が多くなっている。これは、ジャガル土壌の①土壌が肥沃である、②重粘土壌で水分保持力が強い、③土壌害虫が少なく高いやすやすするチャンスが高い等の特性と関係している。使用品種

表1. 競作会における可製糖率関連形質の諸形質（株出、品種こみ）。

<table>
<thead>
<tr>
<th>年</th>
<th>品種</th>
<th>茎数</th>
<th>収量</th>
<th>1茎重</th>
<th>茎長</th>
<th>茎径</th>
<th>可製糖量</th>
<th>可製糖率</th>
<th>青葉重</th>
<th>地域</th>
<th>順位</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>F172</td>
<td>8,800</td>
<td>13,618</td>
<td>1,920</td>
<td>319</td>
<td>2.5</td>
<td>1,627</td>
<td>12</td>
<td>1,874</td>
<td>玉城</td>
<td>1位</td>
</tr>
<tr>
<td>6</td>
<td>Ni9</td>
<td>8,550</td>
<td>13,846</td>
<td>1,740</td>
<td>335</td>
<td>2.5</td>
<td>1,929</td>
<td>14</td>
<td>1,607</td>
<td>玉城</td>
<td>1位</td>
</tr>
<tr>
<td>7</td>
<td>Ni9</td>
<td>10,400</td>
<td>13,596</td>
<td>1,307</td>
<td>338</td>
<td>2.5</td>
<td>1,931</td>
<td>14.2</td>
<td>1,980</td>
<td>東風平</td>
<td>1位</td>
</tr>
<tr>
<td>7</td>
<td>Ni9</td>
<td>7,600</td>
<td>11,780</td>
<td>1,550</td>
<td>331</td>
<td>2.3</td>
<td>1,661</td>
<td>14.1</td>
<td>1,277</td>
<td>玉城</td>
<td>1位</td>
</tr>
<tr>
<td>8</td>
<td>Ni9</td>
<td>8,733</td>
<td>13,456</td>
<td>1,740</td>
<td>329</td>
<td>2.6</td>
<td>1,884</td>
<td>14</td>
<td>1,680</td>
<td>東風平</td>
<td>1位</td>
</tr>
<tr>
<td>9</td>
<td>Ni9</td>
<td>8,300</td>
<td>9,747</td>
<td>1,250</td>
<td>273</td>
<td>2.2</td>
<td>1,423</td>
<td>14.6</td>
<td>1,157</td>
<td>玉城</td>
<td>基準以下</td>
</tr>
<tr>
<td>9</td>
<td>NiF8</td>
<td>8,960</td>
<td>10,093</td>
<td>1,410</td>
<td>277</td>
<td>2.6</td>
<td>1,494</td>
<td>14.8</td>
<td>1,713</td>
<td>下地</td>
<td>基準以下</td>
</tr>
<tr>
<td>10</td>
<td>Ni9</td>
<td>7,866</td>
<td>11,360</td>
<td>1,380</td>
<td>297</td>
<td>2</td>
<td>1,602</td>
<td>14.1</td>
<td>971</td>
<td>大里</td>
<td>1位</td>
</tr>
<tr>
<td>10</td>
<td>NiF8</td>
<td>8,800</td>
<td>12,279</td>
<td>1,630</td>
<td>332</td>
<td>2.2</td>
<td>1,817</td>
<td>14.8</td>
<td>1,050</td>
<td>石垣</td>
<td>1位</td>
</tr>
<tr>
<td>11</td>
<td>F177</td>
<td>5,500</td>
<td>11,920</td>
<td>1,730</td>
<td>333</td>
<td>2.3</td>
<td>1,812</td>
<td>15.2</td>
<td>949</td>
<td>宜野座</td>
<td>1位</td>
</tr>
<tr>
<td>11</td>
<td>NiF8</td>
<td>7,500</td>
<td>11,759</td>
<td>1,670</td>
<td>322</td>
<td>2.6</td>
<td>1,646</td>
<td>14</td>
<td>1,051</td>
<td>下地</td>
<td>1位</td>
</tr>
<tr>
<td>12</td>
<td>Ni9</td>
<td>8,920</td>
<td>13,222</td>
<td>1,690</td>
<td>339</td>
<td>2.4</td>
<td>1,785</td>
<td>13.5</td>
<td>1,427</td>
<td>東風平</td>
<td>1位</td>
</tr>
</tbody>
</table>

表2. 可製糖量関連形質の基本統計量（株出、品種こみ）。

<table>
<thead>
<tr>
<th>茎数</th>
<th>収量</th>
<th>1茎重</th>
<th>茎長</th>
<th>茎径</th>
<th>可製糖量</th>
<th>可製糖率</th>
<th>青葉重</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均</td>
<td>8,327.417</td>
<td>12,223</td>
<td>1,584.75</td>
<td>318.75</td>
<td>2.391667</td>
<td>1,717.583</td>
<td>14.10833</td>
</tr>
<tr>
<td>標準偏差</td>
<td>1,172.772</td>
<td>1,378.481</td>
<td>205.5941</td>
<td>23.35166</td>
<td>0.192865</td>
<td>167.316</td>
<td>0.811797</td>
</tr>
<tr>
<td>最小</td>
<td>5,500</td>
<td>9,747</td>
<td>1,250</td>
<td>273</td>
<td>2</td>
<td>1,423</td>
<td>12</td>
</tr>
<tr>
<td>最大</td>
<td>10,400</td>
<td>13,846</td>
<td>1,920</td>
<td>339</td>
<td>2.6</td>
<td>1,931</td>
<td>15.2</td>
</tr>
</tbody>
</table>
は、Ni9が6回、NiF8が2回、F172とF177がそれぞれ1回の合計4品種が使用された。Ni9が多く使用されている。

2. 可製糖量、収量の発現

株出栽培でのサトウキビは、平均収量（12,223kg／10a）、平均茎数（8327本／10a）、平均1茎重（1,585g）、平均茎長（319cm）、平均茎径（2.39cm）、平均可製糖率（14.11%）、平均可製糖量（1,718kg／10a）、平均青葉重（1,395kg／10a）を示した。平成6年と7年の玉城村（Ni9）と東風平町（Ni9）のサトウキビは、それぞれ収量（13,846kg／10a, 13,596kg／10a）、茎数（8,550本／10a, 10,400本／10a）、1茎重（1,740g, 1,307g）、茎長（335cm, 338cm）、茎径（2.5cm, 2.5cm）、可製糖量（1,926kg／10a, 1,931kg／10a）、可製糖率（14.0％, 14.2％）、青葉重（1,607kg／10a, 1,980kg／10a）のように高糖・多収を示し、産糖量は約2ton／10aに近い成績であった（図1, 2, 3）。

![図2. 収量と1茎重との関係（株出、品種込み）](image)

![図3. 収量と茎長との関係（株出、品種込み）](image)

表3. 可製糖量関連形質間の相関行列（株出）

<table>
<thead>
<tr>
<th>茎数</th>
<th>収量</th>
<th>1茎重</th>
<th>茎長</th>
<th>茎径</th>
<th>可製糖量</th>
<th>可製糖率</th>
<th>青葉重</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.318632</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1茎重</td>
<td>-0.26347</td>
<td>0.624536</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1茎長</td>
<td>-0.00319</td>
<td>0.837324</td>
<td>0.578811</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1茎径</td>
<td>0.309455</td>
<td>0.366118</td>
<td>0.374108</td>
<td>0.211442</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>可製糖量</td>
<td>0.164196</td>
<td>0.83677</td>
<td>0.400471</td>
<td>0.876141</td>
<td>0.251176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>可製糖率</td>
<td>-0.33144</td>
<td>-0.54055</td>
<td>-0.50807</td>
<td>-0.19602</td>
<td>-0.26661</td>
<td>0.006788</td>
<td></td>
</tr>
<tr>
<td>青葉重</td>
<td>0.736395</td>
<td>0.503094</td>
<td>0.100944</td>
<td>0.124314</td>
<td>0.66926</td>
<td>0.264229</td>
<td>-0.49055</td>
</tr>
</tbody>
</table>

注） [] は、統計的に5％水準で有意差がある。

[] は、統計的に1％水準で有意差がある。
3. 形質間相関関係から見た高糖・多収性

表3には、可製糖量関連形質間の相関行列を示した。可製糖量は、収量（r=0.84**）、茎長（r=0.88**）と正の相関関係が認められ、可製糖率との間には有意な相関関係は認められなかった。収量は、1茎重（r=0.62*）、茎（r=0.84**）と正の相関関係が認められ、茎数とは有意な相関関係は認められなかった。株出栽培においても、茎長の伸びが1茎重を重くし、1茎重の増大が多収につながり、多収が多産糖量につながる構図が適応できる。この結果は、高糖性品種が使用されていることと関係している。

また、収量と茎数との間に相関関係が認められなかったのは十分な茎数確保があったことと関連している。

4. 高糖・多収性品種「Ni9」

表4、表5には、可製糖量関連形質のNi9とNI9以外の品種の形質値を示した。Ni9とNI9以外の品種は、それぞれ平均収量（12,429kg/10a、11,933kg/10a）、平均茎数（8,624kg/10a、7,912kg/10a）、1茎重（1,522kg、1,627kg）、平均茎長（320cm、317cm）、平均茎径（2.36cm、2.44cm）、平均可製糖量（1,745kg/10a、1,679kg/10a）、平均可製糖（14.07%、14.16%）、青葉重（1,442kg/10a、1,327kg/10a）を示した。Ni9がNI9以外の品種に比較して、両者の差は収量は+496kg/10a、茎数は+712本/10a、1茎重は-150kg、茎長は並、茎径は-0.08cm、可製糖量は+66kg/10a、可製糖率は並、青葉重は+115kg/10aであった。Ni9の特徴的なことは、茎数が多いため株出適応が高く多収となり、これが多産糖量につながっていく事である。Ni9は茎数の確保と長茎の特性によって地域の平均収量を上げる品種といえるよう。