<table>
<thead>
<tr>
<th>タイトル</th>
<th>沖縄地域学リポジトリ ORION：Okinawa Repository Integrated Open-Access Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>アクセス</td>
<td>沖縄農業 に於ての研究</td>
</tr>
<tr>
<td></td>
<td>沖縄農業研究会</td>
</tr>
<tr>
<td></td>
<td>沖縄農業研究会</td>
</tr>
</tbody>
</table>
Growth of Young Sorghum Plant on Two Okinawan Acid Soils Treated with Slag and Nitrogen

Kazuhiro Oya *, Moritaka Shimo *, Clement C. Moredo, Jr.**, Pensri Choovoravech ***, Rawiwan Artsamang ****, and Teani M. Wijerante *****

* College of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903—01, Japan.
** Forest Products Research and Development Institute, National Science and Technology Authority, Laguna, the Philippines.
*** Soil Science Division, Department of Agriculture, Bangkhen, Bangkok 10900, Thailand.
**** Department of Science Service, Ministry of Science, Technology and Energy, Rama 6 Street, Bangkok 10400, Thailand.
***** Department of Agriculture, Education and Training Division, Peradenia, Sri Lanka.

I. Introduction

The acid soils cover 4,588 million hectares (41.7%) of the world total land usable for agriculture according to the estimation by Nagaoka 2. Because of the extent and distribution of the acid soils, proper management practices are requested on these soils in agricultural production of the respective regions.

In Okinawa Islands, the area more than 33% of the arable upland is occupied by the acid soils or by the soils so-called poor in nutrients 3. Recommended practices on these soils are to apply such soil amendments as lime and magnesium—calcium silicate to neutralize soil acidity and provide basic elements. Analyses show that the slag contains various basic elements and indicate that the slag is a useful material as soil amendment. The slag is, however, not commonly used in Okinawa, and therefore, investigations are necessary to test its effectiveness on Okinawan soils.

In order to test the effect of the slag application coupled with nitrogen on the plant growth in acid soils of Okinawa, conducted was a pot experiment, which was done as a part of the experiments in the JICA training program the "Effective Utilization of Tropical Agriculture and Forestry Resources" held at
the College of Agriculture, University of the Ryukyus from November, 1985 to April, 1986.

II. Materials and Methods

1. Soil

Two acid soils were used for the pot experiment, one was a Red soil and the other was a Dark—Red soil. A surface layer (0~15 cm) of a Red Soil which was being developed from slate was collected from a fallow land in Oku, Kunigami at the northern part of Okinawa Island. The site had such vegetation as Imperata cylindrica var. (Chigaya in Japan.), Miscanthus sinensis (Susuki in Japan.) and Melastoma candidum (Nobotan in Japan.) after tea cultivation. A Dark—Red soil was collected from the surface layer (0~15 cm) of the university farm No. 17. The soil was being formed on the sediment related to limestone. The both soils were heavy clay in texture.

The collected soils were sieved through a wire screen with 5 mm holes, air-dried, mixed thoroughly, and treated with slag and fertilizers as stated later.

2. Analysis of soil and plant material

Aliquots of the two soils were analyzed to determine some of their chemical properties after crushing and sieving with a 2 mm screen. The results of the analysis were shown in Table 1. The soil pH was measured in a 1:2.5 soil—water (or N KC1) suspension. Exchange acidity was titrated with the barium chloridetriethanolamine method. Cation exchange capacity (CEC) was determined by the N ammonium acetate method, and exchangeable bases were measured in an acetate leachate with an atomic absorption unit. Total carbon was determined by the wet combustion method. Total nitrogen was determined by the Kjeldhal procedure. Available phosphate was extracted with 0.002 N sulfuric acid and determined by the molybdenum blue method.

Nitrogen of the plant material after harvesting was determined as those applied for the soil analysis, and phosphorus was determined by the vanadate yellow method in a sample solution resulting from nitric acid—perchloric acid digestion.

Table 1. Chemical properties of the Red and Dark Red soils used in the pot experiment

<table>
<thead>
<tr>
<th></th>
<th>Exchange acidity</th>
<th>CEC</th>
<th>Exchangeable base</th>
<th>Base saturation</th>
<th>Total carbon *</th>
<th>Total nitrogen</th>
<th>Available phosphate *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td>4.77</td>
<td>3.80</td>
<td>13.8</td>
<td>10.01</td>
<td>0.52</td>
<td>0.62</td>
<td>0.13</td>
</tr>
<tr>
<td>KCl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red soil</td>
<td>4.77</td>
<td>3.80</td>
<td>13.8</td>
<td>10.01</td>
<td>0.52</td>
<td>0.62</td>
<td>0.13</td>
</tr>
<tr>
<td>Dark Red soil</td>
<td>5.74</td>
<td>5.36</td>
<td>2.3</td>
<td>11.53</td>
<td>10.26</td>
<td>1.22</td>
<td>0.73</td>
</tr>
</tbody>
</table>

* Based on the supplementary analysis done by N. Yamauchi.
Table 2. Slag and fertilizer treatments for the soils in the experiment (per 3 kg soil/pot)

<table>
<thead>
<tr>
<th>Treatment number</th>
<th>Slag (g)</th>
<th>Ammonium sulfate (g)</th>
<th>Superphosphate (g)</th>
<th>Potassium chloride (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0 - N0.5</td>
<td>0</td>
<td>2.5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>S0 - N1.0</td>
<td>0</td>
<td>5.0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>S1 - N0.5</td>
<td>30</td>
<td>2.5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>S1 - N1.0</td>
<td>30</td>
<td>5.0</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

3. Treatment

The combination of the treatment was as indicated in Table 2. Slag was given to the soil at a rate of 0 and 30 g per pot, of which size was 1/500,000 ha (16 cm D. × 19.5 cm H.) containing 3 kg of soil on the dry weight basis. And the soils were treated with ammonium sulfate at a rate of 2.5 and 5.0 g. Phosphorus and potassium were applied by 4 g of superphosphate and 1 g of potassium chloride. The treatment was replicated twice.

The chemical composition of slag was indicated as 30~41% of SiO₂, 35~45% of CaO, 3~7% of MgO, 0.3~1.7% of Mn, 0.3~1.7% of FeO, 12~20% of Al₂O₃, and 0.004~0.05% of P₂O₅ in general.

4. Growing plant

A fodder crop sorghum (Sorghum sudanense × Sorghum sucraratum; Culti. Diasorghum) was grown for 35 days in the greenhouse (Photo. 1). About 30 seeds of the sorghum were sown on the treated soils in the pots on December 20, 1985. Thinning was done to leave 26 plants per pot on January 8, 1986. Water was given to keep soil moisture at 70% of the water capacity of the respective soils. Cloudy days were dominant and the air temperature was rather low for the crop fluctuating between about 12 and 20°C during the period of this experiment. The aerial portions of the sorghum plant was harvested by cutting near the ground on January 24, 1986 (Photo. 2). The fresh weight of the plant material was recorded immediately after harvesting and the dry weight was determined after drying at 70°C for overnight.

III. Results and Discussion

1. Growth of the sorghum plant

The fresh and dry weights of the sorghum plant were recorded as a measure of the growth performance on the treated soils and were shown in Table 3 where the values were the means of 2 replications. It was recognizable from Table 3 that the sorghum plant had better growth on the Dark Red soil than on the Red soil. This was proved by an analysis of variance, which indicated the difference between the 2 soils was significant at the 0.1% probability level for both the fresh and dry weights of the plant. The better plant growth on the Dark Red soil resulted evidently from the chemical properties of the soil, which were as shown in Table 1 superior to those of the Red soil in every aspect except for nitrogen.
2. Effects of slag and nitrogen on the plant growth

The slag application was effective on the plant growth in the Red soil. It was deemed that basic elements such as Ca and Mg were supplied with the Red soil from the slag and resulted in a rise of soil pH. According to Yamauchi [4] who worked on the same soil, the soil pH rose to 5.1 by incorporation of 0.4g of the slag with 40g of the soil, the ratio equivalent to 30g slag per 3kg soil in the treatment of the present experiment. Yamauchi [4] showed that the soil test value decreased in 0.002 N sulfuric acid soluble phosphate when the slag was applied. Therefore, it was not expected that the pH rise by the slag application improved phosphorus availability in this soil, but the effect was to depress activity of H⁺, Al³⁺ ions and other acidic groups which were harmful to the plant roots at a lower soil pH. The slag application would also have improved microbial processes leading to availability of nitrogen.

Increased application of nitrogen did not effect on the plant growth in the Red soil. The nitrogen content of the soil was 0.17%. With this level of nitrogen the slag application seemed to be more important than nitrogen in the case of the present experiment. If the period of the plant growth was made longer than this experiment or the conditions of light and temperature were better for the sorghum

<table>
<thead>
<tr>
<th>Nitrogen treatment</th>
<th>Red soil slag 0</th>
<th>Red soil slag 1</th>
<th>Dark Red soil slag 0</th>
<th>Dark Red soil slag 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 0.5</td>
<td>4.39</td>
<td>21.26</td>
<td>41.56</td>
<td>35.89</td>
</tr>
<tr>
<td>N 1.0</td>
<td>1.83</td>
<td>15.68</td>
<td>41.54</td>
<td>36.65</td>
</tr>
</tbody>
</table>

Table 3. Fresh and dry weigh of the sorghum plant

Photo 1. The pot experiment was conducted in the greenhouse.
(From left to right: Clement C. Moredo, Jr., Pensri Choovoravech, Rawiwan Artsamang, Teani M. Wijerante and K. Oya)

Photo 2. Growth determination of the sorghum plant after growing for 35 days.
plant like in the summertime when the sorghum plant usually become vigorous, the plant growth would have been favorably affected by the increased application of nitrogen as well as by the slag.

In contrast to the Red soil the slag application did not show any favorable effect on the growth of the sorghum plant in the Dark Red soil. The soil had a pH (H₂O) value of 5.7, was relatively rich in bases and showed very high base saturation percentage. It was deemed that the soil chemical properties as such were suitable enough for the plant and applying the soil amendment slag was not needed for this soil. The analysis of variance showed the interaction between the soil and slag factors was significant at the 5% probability level for both the fresh and dry weights of the plant. This meant that the effect of the slag application on the plant growth was different between the 2 soils, practically the application of slag had a favorable effect in the Red soil but not in the Dark Red soil.

The increment of nitrogen application resulted in an increase of the dry weight of the plant on the Dark Red soil without the slag application. This, however, was overshadowed by the plant yield which did not show any increase with the slag and the increment of nitrogen applied, and was not indicated significant in the analysis of variance. About the efficacy of nitrogen the discussion done for the Red soil would apply here, too.

3. Absorption of nitrogen and phosphorus of the sorghum plant.

The contents of nitrogen and phosphate of the sorghum plant were shown in Table 4 on the dry weight basis. Phosphate analysis was not able to do on some treatments due to insufficiency of the plant tissue samples and resulted was a lack of data in Table 4.

The level of nitrogen was higher in the sorghum plant grown on the Red soil than on the Dark Red soil. The Red soil had a higher soil test value for total nitrogen, and that seemed to have caused the higher nitrogen level in the plant. The analysis of variance also showed significant difference in the nitrogen level of the plant between the soils at the 5% probability level.

Table 4. Contents of nitrogen and phosphate of the sorghum plant

<table>
<thead>
<tr>
<th>Nitrogen treatment</th>
<th>Red soil Slag 0</th>
<th>Slag 1</th>
<th>Dark Red soil Slag 0</th>
<th>Slag 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 0.5</td>
<td>3.32</td>
<td>4.13</td>
<td>3.41</td>
<td>2.71</td>
</tr>
<tr>
<td>N 1.0</td>
<td>4.48</td>
<td>4.79</td>
<td>3.29</td>
<td>3.19</td>
</tr>
<tr>
<td></td>
<td>% N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N 0.5</td>
<td>0.56</td>
<td>0.50</td>
<td>0.45</td>
<td>0.44</td>
</tr>
<tr>
<td>N 1.0</td>
<td>—</td>
<td>0.44</td>
<td>0.45</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>% P₂O₅</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Absorption of nitrogen and phosphate of the sorghum plant

<table>
<thead>
<tr>
<th>Nitrogen treatment</th>
<th>Red soil Slag 0</th>
<th>Slag 1</th>
<th>Dark Red soil Slag 0</th>
<th>Slag 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 0.5</td>
<td>33</td>
<td>128</td>
<td>164</td>
<td>161</td>
</tr>
<tr>
<td>N 1.0</td>
<td>24</td>
<td>129</td>
<td>241</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>N, mg/pot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N 0.5</td>
<td>7.0</td>
<td>15.3</td>
<td>21.7</td>
<td>26.1</td>
</tr>
<tr>
<td>N 1.0</td>
<td>—</td>
<td>12.0</td>
<td>32.6</td>
<td>27.5</td>
</tr>
<tr>
<td></td>
<td>P₂O₅, mg/pot</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The nitrogen content of the plant tended to increase with the slag application and with the nitrogen increment applied on the Red soil. On the other hand the plant tended to decrease in the nitrogen level with the slag application. Much difference was not indicated in the phosphate level of the plant by any of the soil and treatment factors.

Absorption of nitrogen and phosphate by the plant was obtained by multiplying the dry weight of the plant by percent of the elements in the plant. And the results were shown in Table 5.

In the Red soil the nitrogen absorption of the plant was excellently affected by the slag application which gave a favorable effect on the plant growth by raising soil pH to some extent and by depressing activity of H⁺, Al³⁺ ions and other acidic groups to be harmful for the plant roots. It could be assumed that the phosphate absorption of the plant being increased by the slag application, though this was not claimed strongly because of insufficiency of data.

In the Dark Red soil neither the slag application nor the increment of nitrogen applied was found to be efficient in the plant absorption of nitrogen and phosphate.

IV. Summary

An pot experiment was conducted in order to investigate effects of slag (a soil amendment) and nitrogen applied to two Okinawan acid soils on the growth and the absorption of nitrogen and phosphate of the sorghum plant (Sorghum sudanese x Sorghum succharatum; Culti. Diasorghum). The experiment was three factorial; namely the soils used were a Red soil (pH 4.8) and a Dark Red soil (pH 5.7). The slag was applied at a rate of 0 and 30 g par 3 kg (per pot) of soil, and ammonium sulfate as a source of nitrogen was applied at a rate of 2.5 and 5.0 g per 3 kg of soil.

The weight of the aerial portions of the plant was determined as a measure of the plant growth. Significant difference in the fresh and dry weights of the plant was found between the two soils; namely the plant growth was much better on the Dark Red soil which had chemical properties superior to the Red soil in every aspect except for nitrogen content.

There was also a significant interaction of the soil and slag factors indicating that the slag application was effective on the plant growth in the Red soil but not in the Dark Red soil. The increment of nitrogen applied tended to increase in the dry weight of the plant grown on the Dark Red soil though statistical significance was not found on the nitrogen factor.

The level of nitrogen in the plant was significantly higher on the Red soil than on the Dark Red soil. It was deemed that this was due to the higher nitrogen content of the Red soil. The level of phosphate in the plant was found not affected by any of the soil and treatment factors.

The quantity of nitrogen absorbed by the plant related closely to the extent of the plant growth and tended to be more in the Dark Red soil than in the Red soil. On the Red soil the nitrogen absorption of the
plant increased with the slag application which improved the plant growth. Because of the better plant growth on the Dark Red soil, the quantity of phosphate absorbed by the plant also tended to be more on the Dark Red soil than on the Red soil.

Literature Cited

4. Yamauchi, Noriko 1986 Personal communication.
摘 要

沖縄の酸性土壌におけるソルゴー幼植物の
生育に及ぼすスラッグと窒素施用の影響

大屋一弘*・志茂守孝*・クレメント C. モレド ジュニア **・ベンシュリ チョーボ
ラベッチ***・ラウイワン アーツァマン ****・ティアニイ M. ウィジャランテ ******

* 903-01 沖縄県西原町琉球大学農学部
**フィリピン国ラグナ市国立科学技術局森林生産物開発研究所
***タイ国バンコク10900バンコク市農業省土壌部
****タイ国バンコク10400ラマ5番街科学技術エネルギー省科学事業局
*****スリランカ国ペラデニア市教育訓練局農業部

沖縄島の2種類の酸性土壌における土壌改良剤スラッグと窒素の施用がソルゴーの生育
と窒素及びリン酸の吸収に及ぼす影響を調べる目的でポット試験を行った。土壌は赤色土（pH
4.8）、暗赤色土（pH 5.7）、スラッグはポット（5,000分
の1a ワグネル, 土3kg) 当たり0又は30g 施用, ći
窒素は硫安を2.5g 又は5.0g 施用の3因子実験で, 旋り返しを2 回とした。植物は飼料用ダイヤソル
ゴーを用い, 1985年12月20日に播種し, 35日間が
ラス室で栽培した。

土壌分析によると養分含量は赤色土より暗赤色
土において高いことが示されたが, ソルゴー地上
部の刈り取り生長と乾物重を測定した結果, 生長,
乾物重ともに暗赤色土で大きく, 土壌肥沃度の違
いがソルゴーの生育にも反映された。この土壌間の差は1%有意であった。赤色土においてはスラ
ッグ施用によりソルゴー生長は増加したが, 暗赤
色土においてはその効果がなかった。この土壌と
スラッグ間の交互作用は5%有意であった。乾物
重については統計的な有意性は示されなかったが,
暗赤色土におけるスラッグ無施用の場合, 窒素の
増施によりソルゴー乾物重は増加する傾向を示し
た。

ソルゴーの窒素%は赤色土において高かった（5%
有意）が, これはこの土壌の窒素含量が暗赤色土
よりも高かったことに起因すると思われた。ソルゴーの
リン酸%については土壌間及び処理間で大きな差
は認められなかった。

ソルゴーの窒素及びリン酸吸収量は乾物重×養
分%により求めたが, それぞれの吸収量は生育量
に大きく影響され, 窒素及びリン酸共に暗赤色土
において多く吸収された。赤色土においてはスラ
ッグ施用による生育量増加に起因して, 窒素, リ
ン酸ともスラッグ施用区で多く吸収される傾向が
見られた。

以上よりスラッグは土壌改良剤として供試赤色
土におけるソルゴーの栽培に極めて有効であると
考えられる。